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 32 

Abstract: 33 

Tropical-mean tropospheric temperatures are lower than those predicted by the moist 34 

adiabatic lapse rate. The differences Δ𝑇 between tropical-mean temperatures and a moist adiabat 35 

increase notably in climate change simulations, with implications for trends in CAPE and 36 

tropical temperatures. The increases in Δ𝑇 under climate change have been interpreted as a 37 

consequence of a fixed convective entrainment rate acting on increases in the saturation deficit 38 

between undilute convecting plumes and the environment. Here we use a zero-buoyancy 39 

entraining plume model to argue that the increases in Δ𝑇 found in climate change simulations 40 

can only be reproduced when the entrainment rate also increases substantially with temperature. 41 

The relationship between temperature and the entrainment rate implied by the plume model is 42 

roughly linear and is reproducible when the model is constrained by observations. The implied 43 

increases in the entrainment rate with global warming have implications for long-term changes in 44 

both the mean and variance of tropical temperatures. 45 

 46 

1. Introduction 47 

  The vertical profile of tropical-mean tropospheric temperatures 𝑇 is strongly constrained 48 

by the physics of the moist adiabatic lapse rate. To zero-order, temperatures in convecting 49 

regions closely follow a moist adiabat since the air is saturated, and temperatures in convecting 50 

regions are rapidly communicated to clear-sky regions through atmospheric dynamical processes 51 

(Charney 1963; Stone and Carlson, 1979; Sobel and Bretherton 2000). However, 𝑇 also exhibits 52 

well-known departures from those predicted by the moist adiabat.  53 

 The differences between tropical-mean temperatures and a moist adiabat (Δ𝑇) are robust 54 

in the climatological-mean. Tropical-mean temperatures are several degrees lower than those 55 

predicted by a moist adiabat in both observations (Singh and O’Gorman 2013; Keil et al., 2019) 56 

and control simulations run on fully coupled Earth System Models (ESMs; Po-Chedley et al. 57 

2019; Keil et al., 2019; Miyawaki et al. 2020). Importantly, the differences Δ𝑇 are also expected 58 

to increase under climate change. Numerical simulations forced with increasing greenhouse 59 

gases widely indicate robust increases in Δ𝑇 in response to rising temperatures (Santer et al. 60 

2005; Sobel and Camargo 2011; Fasullo 2012; Zhou and Xie, 2019; Miyawaki et al. 2020; Bao 61 

and Stevens 2021; Bao et al. 2021). The simulated increases in Δ𝑇 are associated with notable 62 
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increases in convective available potential energy (CAPE) (Romps 2011; Muller et al. 2011; 63 

Singh and O’Gorman 2013; Seeley and Romps, 2015), with implications for increases in 64 

lightning strikes (Romps et al., 2014), the strength of convective updrafts (Singh and O’Gorman 65 

2013), and climate sensitivity (Bao and Stevens 2021). The detection of observed trends in upper 66 

tropical tropospheric temperatures - and thus tropical Δ𝑇 - is complicated by, for example, the 67 

influence of stratospheric layers on remotely sensed retrievals of upper tropospheric 68 

temperatures and biases in radiosonde measurements (e.g., Santer et al., 2005, 2017; Flannaghan 69 

et al., 2014; Steiner et al., 2020). Nevertheless, analyses of ERA-40 (e.g., Riemann-Campe et al., 70 

2009), radiosonde data over the tropics (e.g., Gettelman et al. 2002; Santer et al. 2005), 71 

radiosonde data over NH midlatitudes (Chen and Dai 2023), and both radiosonde and microwave 72 

sounding products over the tropics (e.g., Steiner et al., 2020; c.f., Fig. 13) generally suggest 73 

changes in tropical temperatures that are indicative of increases in Δ𝑇 or increases in CAPE. 74 

 Why does Δ𝑇 - and thus CAPE - increase under global warming? In the climatology, the 75 

depression of tropical temperatures relative to a moist adiabat is thought to arise from the mixing 76 

of relatively dry environmental air into convecting plumes through entrainment. The importance 77 

of convective entrainment can, in turn, be decomposed into two factors: a) the entrainment rate 𝜀, 78 

which reflects the amplitude of turbulent mixing and also the distribution of convective plumes 79 

across the tropics; and b) the differences in moist static energy Δℎ between convecting plumes 80 

and the surrounding environment. The changes in Δ𝑇 under climate change are thought to arise 81 

primarily from increases in Δℎ, since the differences in moist static energy between plumes and 82 

the surrounding environment scale with the saturation vapor pressure of the air (Singh and 83 

O’Gorman 2013). Here we argue that the changes in Δ𝑇 found in climate change simulations are 84 

only partially accounted for by changes in Δℎ, and are also indicative of substantial increases in 85 

the entrainment rate 𝜀. 86 

 The paper is organized as follows. Section 2 outlines the data sources and analysis 87 

technique. Section 3 confirms that tropical-mean tropospheric temperatures T are less than those 88 

predicted by the moist adiabat in both observations and climate simulations, and that Δ𝑇 89 

increases notably with temperature. In Section 4, we demonstrate using the zero-buoyancy plume 90 

model of Singh and O'Gorman (2013) that the variations in Δ𝑇 found in both climate change 91 

simulations and observations are underestimated by the attendant changes in Δℎ, and are only 92 

reproducible if the entrainment rate is assumed to increase roughly linearly with atmospheric 93 
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temperature. In Section 5 we argue that the near-linear relationship between temperature and the 94 

entrainment rate has substantial implications for long-term changes in both the mean and 95 

variance of tropical temperatures. Conclusions are provided in Section 6. 96 

 97 

2. Data and analysis 98 

 The primary climate model results are derived from the 40 member large-ensemble of 99 

simulations run on the National Center of Atmospheric Research (NCAR) Community Earth 100 

System Model version 1 over the period 1950-2100 (NCAR CESM1; Hurrell et al. 2013, Kay et 101 

al. 2015). The output is publicly available via the NCAR Multi-Model Large Ensemble Archive 102 

(MMLEA; Deser et al., 2020) and archived on resources sponsored by the US Climate and 103 

Ocean Variability, Predictability and Change (CLIVAR) Working Group on Large Ensembles 104 

and National Science Foundation/Computational and Information Systems 105 

Laboratory/Yellowstone. The experiments are integrated with Coupled Model Intercomparison 106 

Project Phase 5 (CMIP5) historical forcing from 1920 to 2005 and Representative Concentration 107 

Pathways 8.5 (RCP8.5) forcing over the period 2006-2100. Key numerical results are reproduced 108 

using output from large-ensembles run on three other Earth system models: The Commonwealth 109 

Scientific and Industrial Research Organisation Mk3.6 (30 simulations; Jeffrey et al., 2013), the 110 

Canadian Centre for Climate Modeling and Analysis CanESM2 (50 simulations; Kirchmeier-111 

Young et al. 2017), and the Geophysical Fluid Dynamics Laboratory ESM2M (30 simulations; 112 

Rodgers et al. 2015). All results are based on annual-mean output. 113 

 Observational results are based on reanalysis data from the European Center for Medium-114 

Range Weather Forecasts Re-Analysis 5 (ERA5; Hersbach et al., 2020). Key observational 115 

findings are reproduced using radiosonde data from the Integrated Global Radiosonde Archive 116 

Version 2 (IGRA2; Durre et al., 2018). 117 

 Throughout the analyses we use the following definitions: 118 

 - T(z) refers to tropical-mean temperatures averaged over the latitude band 20°S-20°N.  119 

 - 𝑇𝑀𝐿𝑅(𝑧) refers to the vertical profile of temperatures that results from integrating T at 120 

700 hPa vertically following the moist lapse rate. The moist adiabatic lapse rate is found as 121 

 122 
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𝛤𝑚 = 𝛤𝑑

1 + 𝐿𝑣𝑤∗

𝑅𝑑𝑇

1 + 𝐿𝑣
2𝑤∗

𝑐𝑝𝑅𝑣𝑇2

 123 

 124 

where 𝑐𝑝 is the specific heat capacity at constant pressure, 𝐿𝑣 is the latent heat of vaporization, 125 

𝑤∗ is the saturation mixing ratio, * denotes the saturation value, 𝑅𝑑 and 𝑅𝑣 are the gas constants 126 

for the dry air and water vapor, 𝛤𝑑 = 𝑐𝑝

𝑔
 is the dry adiabatic lapse rate, and 𝑔 is the gravitational 127 

acceleration. The sensitivity of the results to the use of the 700hPa level as a starting point for the 128 

integration is discussed further below. 129 

 - Δ𝑇(𝑧) is defined as the difference between 𝑇 and 𝑇𝑀𝐿𝑅, that is Δ𝑇 = 𝑇 − 𝑇𝑀𝐿𝑅. 130 

Negative values of Δ𝑇 indicate that simulated or observed tropical-mean temperatures are lower 131 

than that predicted by the moist lapse rate, and vice versa. Note that by construction Δ𝑇 = 0 at 132 

700 hPa. 133 

 134 

 135 
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 136 
Figure 1. Differences ∆𝑇 between actual tropical-mean temperatures and those predicted by the plume model. 137 
Results are based on CESM1 output over 1981-2020 (left); CESM1 output over 2061-2100 (middle); and 138 
ERA5 data over 1981-2020 (right). The predicted temperatures are based on the zero-buoyancy entraining 139 
plume model where the entrainment parameter is set to 𝜖 = 0 (red lines; note that 𝜖 = 0 corresponds to the 140 
moist lapse rate and the differences are labeled as ∆𝑇); 𝜖 = 0.8 (blue line in left), 𝜖 = 0.8 (dashed line in 141 
middle), and 𝜖 = 1.4 (solid lines in middle and right panels). The zero-buoyancy model profiles are integrated 142 
from the 700 hPa level. The zero line indicates where actual and predicted temperatures are identical. 143 

 144 

3. Increased Differences Between Tropical Temperatures and the Moist Adiabat Under 145 

Global Warming 146 

The red lines in Figures 1a and 1b show ensemble-mean values of Δ𝑇 from the NCAR 147 

CESM1 averaged over two time periods: 1981-2020 (Fig. 1a) and 2061-2100 (Fig. 1b). The red 148 

line in Fig. 1c shows the corresponding results based on ERA5 averaged over the 1981-2020 149 
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period. As noted extensively in previous research (e.g., Singh and O’Gorman, 2013; Keil et al., 150 

2019; Zhou and Xie 2019; Miyawaki et al., 2020; Bao and Stevens 2021), tropical-mean 151 

temperatures exhibit marked departures from those predicted by the moist lapse rate. The 152 

departures are notably larger during the latter period of the simulation: Upper tropospheric 153 

temperatures are about ~1.5 – 2K less than those predicted by the moist lapse rate in the current 154 

climate (Fig. 1a) but ~3 - 3.5K less in the latter half of the 21st century (Fig. 1b). Interestingly, 155 

the ERA5 values of Δ𝑇 (Fig. 1c) are roughly twice as large as those found in the CESM 156 

simulation averaged over the 1981-2020 period but bear close resemblance to those found from 157 

CESM output averaged over the latter part of the 21st century. 158 

The systematic nature of the relationship between Δ𝑇 and lower tropospheric temperature 159 

is readily apparent when the results are discretized by year. Figure 2a shows annual-mean values 160 

of Δ𝑇 derived from all 40 CESM simulations over the period 1950-2100, where each line 161 

denotes Δ𝑇 for an individual year, and the colors of the lines indicate the corresponding 700hPa 162 

temperature used as a starting point for the vertical integration of the moist lapse rate. Figure 2d 163 

shows analogous results based on ERA5 for all years 1980-2020. From Fig. 2a it is clear that Δ𝑇 164 

increases systematically with tropical-mean temperature, increasing from Δ𝑇 = −1.5𝐾 at 165 

300hPa for 700hPa temperatures around 280K (output from the mid 20th century) to Δ𝑇 =166 

−4.5𝐾 at 300hPa for 700hPa temperatures around 286K (output from the late 21st century). The 167 

same relationship between temperature and Δ𝑇 is also found in association with annual-mean 168 

ERA5 data over 1980-2020 (Fig. 2d). As noted above, the ERA5 values of Δ𝑇 bear closest 169 

resemblance to simulated values from the latter part of the 21st century (i.e., the warmest profiles 170 

in Fig. 2a). 171 

 172 

 173 
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 174 
Figure 2. (a) Differences ∆𝑇 between actual tropical-mean temperatures and those predicted by the plume model, 175 
where the predicted temperatures are based on the zero-buoyancy entraining plume model where the entrainment 176 
parameter is set to 𝜖 = 0. The differences ∆𝑇 are plotted separately for each year from 1950 to 2100 in all 40 177 
simulations, where the color of each line indicates the corresponding annual mean 700 hPa temperature. (b) As 178 
in panel (a), but the predicted temperatures are based on the zero-buoyancy entraining plume model where the 179 
entrainment parameter is set to 𝜖 = 0.8 during all years (c) As in panel (b), but the predicted temperatures are 180 
based on the zero-buoyancy entraining plume model where the entrainment parameter varies as per the linear fit 181 
of the grey dots in Fig. 3a (given in Eq. 4b). (d-f) As in panels (a)-(c), but for results based on ERA5 output over 182 
the 1981-2020 period. The entrainment rate for panel (e) is set to 𝜖 = 1.4, and the linear fit is given by the linear 183 
fit of the black dots in Fig. 3a (given in Eq. 4a) 184 
 185 

4. Implied increases in the convective entrainment rate 186 

 Why does Δ𝑇 increase as lower tropospheric temperatures increase? As discussed in the 187 

Introduction, the climatological-mean values of Δ𝑇 are thought to arise from a variety of factors, 188 

including the entrainment of dry air into regions of deep convection, the signature of convective 189 

plumes with different vertical extents and entrainment rates in tropical-mean temperatures, and 190 

the effects of the large-scale circulation on the thermal stratification of the atmosphere (Romps 191 

and Kuang 2010; Singh and O’Gorman 2013; Zhou and Xie 2019; Keil et al., 2019; Miyawaki et 192 

al. 2020; Bao and Stevens, 2021; Bao et al. 2021). The increases in Δ𝑇 under climate change 193 

have been linked primarily to increases in the differences in moist static energy Δℎ between 194 

plumes and the surrounding environment, since such differences scale with the saturation vapor 195 

deficit of the environment (Singh and O’Gorman 2013; Seeley and Romps 2015).  196 

 Here we revisit the processes that drive changes in Δ𝑇 under climate change using the 197 

zero-buoyancy plume model developed in Singh and O’Gorman (2013). Briefly, the model is 198 
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derived as follows. The vertical structure of moist static energy (MSE) in an entraining plume 199 

can be approximated as  200 

 201 

(1)     𝑑ℎ
𝑑𝑧

= −𝜀Δℎ 202 

 203 

where 𝜀 is the entrainment rate, Δℎ = ℎ − ℎ𝑒 denotes the difference in MSE between the plume 204 

and the environment, ℎ = 𝑐𝑝𝑇 + 𝑔𝑧 + 𝐿𝑣𝑞 is the MSE, 𝑞 is the specific humidity, and the 205 

subscript e denotes the environment. The zero-buoyancy plume model is motivated by the 206 

observation that the buoyancies of convecting clouds in the tropical atmosphere are relatively 207 

small such that at a given level 𝑇~𝑇𝑒 (Lawson, 1990; Wei et al., 1998; Sherwood et al., 2013; 208 

Singh and O’Gorman 2013; Romps and Charn, 2015). In this case, the differences in MSE 209 

between an undilute plume and the environment reduce to ℎ − ℎ𝑒 = 𝐿𝑣(𝑞 − 𝑞𝑒), and the MSE 210 

and specific humidity of the plume are equal to those for the environment at saturation such that 211 

ℎ = ℎ𝑒
∗  and 𝑞 = 𝑞𝑒

∗. Substituting the above into (1) yields an expression for the vertical profile of 212 

environmental MSE that arises from the effects of convective entrainment: 213 

 214 

(2)    𝑑ℎ𝑒
∗

𝑑𝑧
= −𝜀𝐿𝑣𝑞𝑒

∗(1 − 𝑅𝐻) 215 

 216 

where 𝑅𝐻~ 𝑞𝑒
𝑞𝑒

∗  is the relative humidity of the environment (Singh and O'Gorman 2013; Seeley 217 

and Romps 2015). The differences in MSE between an environment influenced by convective 218 

entrainment (Eq. 2) and one in which the convecting plumes are not diluted (𝑑ℎ𝑢
𝑑𝑧

= 0, where the 219 

subscript u denotes an undilute plume) can be found by integrating Eq. 2 vertically from cloud 220 

base. The results of the integration can then be combined with the Clausius-Clapeyron relation to 221 

yield an expression for the temperature of an environment influenced by convective entrainment 222 

𝑇𝜀 as (i.e., Singh and O'Gorman 2013 Eq. 4): 223 

 224 

(3)    𝑇𝜀 = 𝑇𝑀𝐿𝑅 + 1

𝐿𝑣
𝜕𝑞∗
𝜕𝑇 +𝑐𝑝

׬ 𝜀′𝐿𝑣(1 − 𝑅𝐻)𝑞𝑒
∗𝑧

𝑧𝑏
𝑑𝑧 225 

 226 
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where 𝑧𝑏 is cloud base, 𝑇𝑀𝐿𝑅 is the moist adiabat integrated vertically from 𝑧𝑏, and 𝑇𝜀 is the 227 

temperature of the entraining plume. Following Singh and O'Gorman (2013), the entrainment 228 

profile is approximated as 𝜀′(𝑧) = 𝜀
𝑧
 for 𝑧 ≥ 𝑧𝑏 and 𝜀′(𝑧) = 0 for 𝑧 < 𝑧𝑏, where 𝜀 is specified 229 

and 𝜀′ decreases linearly with height to account for the fact that clouds at different locations 230 

detrain at different levels. The key is that Eq. (3) provides a theoretical estimate of tropical 231 

temperatures as a function of the relative humidity of the environment and a specified 232 

entrainment rate. Following our definition for Δ𝑇 = 𝑇 − 𝑇𝑀𝐿𝑅, we define the differences 233 

between tropical-mean temperatures and those predicted by the entraining zero-buoyancy plume 234 

model for a given entrainment rate as Δ𝑇𝜀 = 𝑇 − 𝑇𝜀. 235 

 The solid blue lines in Figs. 1a-c show Δ𝑇𝜀 derived from Eq. 3, where the entrainment 236 

rate 𝜀 is determined empirically to minimize ∆𝑇𝜀 at the 250hPa level. We fit 𝑇𝜀 to  𝑇 at 250 hPa 237 

since 1) the differences between 𝑇 and the moist adiabat peak near this level (Figs. 2a, d); and 2) 238 

the moist adiabat is less relevant for understanding the temperature profile above ~250hPa 239 

(Folkins 2002, Keil et al, 2019). As done for 𝑇𝑀𝐿𝑅, 𝑇𝜀 is found by starting the integration at 700 240 

hPa. The relative humidity is assumed fixed at 80%, since it remains roughly invariant to 241 

temperature in both models and observations (e.g, Soden et al., 2002, 2005; Soden and Held 242 

2006). The effects of changing the relative humidity are discussed below. 243 

The entrainment rate that provides the best fit between 250hPa temperatures and those 244 

given by the plume model differ notably between the two simulation periods (panels a and b). 245 

The best fit to CESM temperatures during the 1981-2020 period arises when 𝜀 = 0.8 (solid blue 246 

line in Fig. 1a), whereas 𝜀 = 0.8 notably overestimates tropical-mean temperatures during the 247 

2061-2100 era (dashed blue line in Fig. 1b). Rather, the best fit to CESM temperatures during the 248 

2061-2100 era arises when 𝜀 = 1.4, roughly 75% larger than the historical value. The best fit to 249 

the observations is found using an entrainment rate similar to that inferred from the CESM 250 

output over the latter period (Fig. 1c).  251 

As discussed earlier, Δ𝑇 and ∆𝑇𝜀 increase with temperature even if the entrainment rate is 252 

fixed in the case of the latter. That is because the saturation deficit Δℎ between an undilute parcel 253 

and the environment follows Clausius-Clapeyron scaling. This effect is captured in Eq. 3 by 254 

changes in 𝜕𝑞∗

𝜕𝑇
 with temperature (Seeley and Romps 2015). However, from Figs. 1a and 1b, it is 255 
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clear that fixing the entrainment rate at its 1981-2020 value (𝜀 = 0.8) leads to a notable 256 

overestimate of temperatures (as indicated by negative ∆𝑇𝜀) during the 2061-2100 period. 257 

The robustness of the relationships indicated in Fig. 1 are further evidenced in the middle 258 

column of Fig. 2. Fig. 2b shows the differences between tropical temperatures and those 259 

predicted by Eq. 3 with a fixed entrainment rate 𝜀 = 0.8, that is, it shows Δ𝑇𝜀=0.8 = 𝑇 − 𝑇𝜀=0.8. 260 

As in Fig. 2a, results are derived for annual-mean 𝑇 profiles over 1950-2100 from all 40 CESM 261 

simulations, and colors indicate the attendant 700hPa temperatures. If increases in the saturation 262 

vapor deficit accounted for all of the increases in Δ𝑇 with climate change, then 𝛥𝑇𝜀=0.8 should 263 

remain close to zero even as temperatures warm. However, as also indicated in Fig. 1b, it is clear 264 

that fixing the entrainment rate to its 1981-2020 value leads to an increasingly large overestimate 265 

of tropospheric temperature trends (increasingly negative ∆𝑇𝜀) by the plume model.  Similarly, 266 

as indicated for ERA5 in Fig. 2e, fixing the entrainment rate at 𝜀 = 1.4 provides a close fit to the 267 

coldest ERA5 temperature profiles but again overestimates free tropospheric temperatures during 268 

warm years. 269 

 270 

 271 
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Figure 3. Top panels: (a) Scatter plot illustrating the relationship between tropical-mean temperatures at 700hPa 272 
and the entrainment rate that provides the best fit between actual and theoretical tropical-mean temperatures at 273 
250hPa. Grey dots represents individual years from the GCM output; black dots individual years from ERA5. 274 
The black lines indicates the best fits to the model and ERA5 output and are 𝜖 = 0.25𝑇700 − 70  for ERA5 and, 275 
𝜖 = 0.16𝑇700 − 44 for CESM. The error bar for the ERA5 data indicates the 95% confidence range, derived 276 
from the standard error of the regression. (b) Dots indicate the scatter plots of actual tropical-mean temperatures 277 
at 700 hPa and 250 hPa from CESM1 output (grey dots) and ERA5 (black dots). Lines indicate the predicted 278 
relationships using the plume model where the entrainment rate varies with 700hPa temperature as per the linear 279 
fits in panel (a). Bottom panels: (c) Black dots and linear fit: As in the ERA5 results from panel (a), but ERA5 280 
data are sampled at locations where RAOB output are available. Grey dots: Results based on tropical-mean 281 
temperatures from radiosonde data. (d) Black dots and linear fit: As in panel (b), but ERA5 data are sampled at 282 
locations where RAOB output are available and the expression for the entrainment rate is given by the black fit 283 
in panel (c). Grey dots and linear fit: Results based on tropical-mean temperatures from radiosonde data and the 284 
expression for the entrainment rate is given by the grey fit in panel (c). 285 
 286 

 Figure 3 explores in more detail the relationships between 𝑇 and the entrainment rate. 287 

The grey dots in Fig. 3a show the entrainment rate required to minimize Δ𝑇𝜀 at 250hPa, where 288 

each dot shows results for one year of annual-mean output from the 40 CESM1 simulations, and 289 

the x-axis indicates the corresponding 700 hPa temperature that is used as a basis of the 290 

integration in Eq. 3. Note that there are 6040 dots derived from 40 ensemble members and 151 291 

years/simulation. The black dots in Fig. 3a show the same results for annual-mean ERA5 data. 292 

The solid lines show the linear least squares best fits between 𝑇700 and 𝜀, and are equal to 293 

 294 

(4a) 𝜀𝐸𝑅𝐴5 = (0.25 ± 0.02)𝐾−1 × 𝑇700 − 70 295 

 296 

and 297 

 298 

(4b) 𝜀𝐶𝐸𝑆𝑀 = (0.16 ± 0.00)𝐾−1 × 𝑇700 − 44. 299 

 300 

where the range denotes the 95% confidence range derived from the standard error of the 301 

regression. From Fig. 3a, it is clear that both CESM and ERA5 indicate robust linear 302 

relationships between a) cloud base temperatures (i.e., assumed 700hPa in Fig. 3a) and b) the 303 

entrainment rate required by the plume model to simulate 250hPa temperatures. Notably, the 304 

amplitude of  Δ𝜀
Δ𝑇700

 is roughly 50% larger in observations than it is in CESM.  305 

 The linear relationship between 𝑇700 and 𝜀 rate found in ERA5 data is reproducible in 306 

results based on radiosonde data. The grey dots in Fig. 3c show results analogous to those 307 
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indicated in Fig. 3a, but for tropical-mean temperatures from the IGRA radiosonde data. The 308 

black dots in Fig. 3c are a reproduction of the ERA5 results from Fig. 3a, but in this case the 309 

ERA5 data are sampled at locations where RAOB output are available. The best fits to the results 310 

in Fig. 3c are found as: 311 

 312 

(4c) 𝜀𝑅𝐴𝑂𝐵 = (0.25 ± 0.05)𝐾−1 × 𝑇700 − 68 313 

 314 

and 315 

 316 

(4d) 𝜀𝐸𝑅𝐴5 = (0.22 ± 0.05)𝐾−1 × 𝑇700 − 60. 317 

 318 

Importantly, both the radiosonde and ERA5 data indicate a similiar linear relationship between 319 

𝑇700 and 𝜀 that suggests the entrainment rate increases with lower tropospheric temperatures. 320 

The slopes of the ERA5 and radiosonde regression lines are statistically indistinct from each 321 

other. The higher y-intercept in the radiosonde data indicates that - at a given lower tropospheric 322 

temperature - the radiosonde data are cooler than their ERA5 counterparts (i.e., a higher 323 

entrainment rate is required to match upper tropospheric temperatures in the radiosonde data).   324 

 The linear relationship between temperature and the entrainment rate is further 325 

exemplified in Figs. 3b and 3d. The dots in Fig. 3b show annual-mean 250hPa temperatures 326 

plotted as a function of annual-mean 700 hPa temperatures for all years in the CESM output 327 

(gray) and observations (black). The lines show 250hPa temperatures predicted by integrating 328 

Eq. 3 using an entrainment rate given by the linear fits in Fig. 3a (Eqs. 4a and 4b). The linear fits 329 

in Fig. 3a clearly provide a very good estimate of the entrainment rate required to simulate both 330 

CESM and observed upper tropospheric temperatures across a range of temperatures. The results 331 

in Fig. 3d show analogous results, but use the fits in Fig. 3c to compare results based on RAOB 332 

and ERA5 results sampled where RAOB data. In both cases, the linear fits in Fig. 3c provide a 333 

good estimate of the entrainment rate required to match observed upper tropospheric 334 

temperatures. Note that - as discussed above - at a given 700hPa temperature the radiosonde data 335 

are systematically cooler at the 250hPa level than their ERA5 counterparts. 336 

 Finally, Figs. 2c and 2f show the complete vertical profiles of ∆𝑇𝜀 derived using the 337 

linear fits in Fig. 2b for the range of 700hPa temperatures found in CESM and ERA5. The linear 338 
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relationships given in Fig. 4a act to minimize ∆𝑇𝜀 not only at 250hPa (by construction), but 339 

thoughout much of the troposphere.  340 

 The amplitudes of the linear relationships between lower tropospheric temperatures and 341 

the entrainment rate (as indicated in Fig. 3a) vary depending on details of the analysis design. 342 

Nevertheless, they are significantly positive under a range of parameter changes. For examples: 343 

Moving the level where Δ𝑇𝜀 is minimized to 500hPa yields a slope Δ𝜀
Δ𝑇700

 of 0.15 ± 0.00𝐾−1 in 344 

CESM output - which is similar to that in Fig. 3a - and increases the slope in ERA5 data to 345 

0.34 ± 0.04 𝐾−1. Alternatively, keeping the level where Δ𝑇𝜀 is minimized at 250hPa but 346 

lowering "cloud base" to 850hPa reduces the slopes in both CESM output and ERA5: Δ𝜀
Δ𝑇850

=347 

0.06 ± 0.00𝐾−1 in CESM output and 0.05 ± 0.02 𝐾−1 in ERA5.  348 

 In summary, the key findings in Figs. 1-3 are that 1) the zero buoyancy plume model is 349 

capable of simulating the long term changes in free tropospheric temperatures found in climate 350 

change simulations only when the entrainment rate increases with temperature; 2) the required 351 

increases in the entrainment rate vary linearly with lower tropospheric temperature; and 3) 352 

similarly positive relationships between temperatures and the inferred entrainment rate are found 353 

in both ERA5 and RAOB data. The positive linear relationships between temperature and the 354 

entrainment rate are robust to changes in the analysis procedure. They are reproducible in large 355 

ensembles from the three other Earth System Models considered in this study (Appendix Fig. 356 

A1). And they are robust to adjusting the entrainment rate to account for the decreasing coverage 357 

of convection with height (not shown; see Zhou and Xie 2019 Eq. 2; Bao et al., 2021 Eq. 5). We 358 

also checked whether the results might arise from changes in the relative humidity in Eq. 3. 359 

Based on the plume model, the changes in relative humidity required to explain the changes in 360 

∆𝑇 are roughly 25% over the 1950-2100 period. In contrast, we found the linear trend in tropical-361 

mean relative humidity from CESM to be less than 1% throughout the lower troposphere across 362 

the same period (not shown). 363 

 364 

5. Implications 365 

 The inferred relationship between temperature and the convective entrainment rate has 366 

implications for changes in both the mean (Singh and O’Gorman 2013; Seeley and Romps, 2015; 367 

Miyawaki et al. 2020) and variance of tropical temperatures under global warming. 368 
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 369 

 370 

 371 
Figure 4. Time series of tropical-mean temperatures at 250 hPa from 1950 to 2100. The black solid line shows 372 
tropical-mean 250hPa temperature averaged over all 40 climate change simulations in CESM1. The red solid 373 
line indicates the tropical-mean 250hPa temperature predicted by integrating the plume vertically from 700hPa 374 
with 𝜖 = 0 (i.e., equivalent to the moist lapse rate). The blue solid line shows tropical-mean 250hPa temperature 375 
predicted by integrating the plume vertically from 700hPa with 8. The gray dashed line shows tropical-mean 376 
250hPa temperature predicted by integrating the plume vertically from 700hPa where the entrainment rate varies 377 
as per the fit in Fig. 3a (given in Eq. 4b). Trends are calculated over the period 2050-2100. 378 
 379 

Implications for trends in mean tropical temperatures  380 

 The implications for tropical-mean temperature trends are summarized in Figure 4. The 381 

grey line show the actual ensemble-mean 250hPa temperatures averaged over the tropics from 382 

the CESM large-ensemble of climate change simulations. Upper tropospheric temperatures 383 

increase from ~228 K in 1950 to 237 K in 2100, and the mean warming rate over the latter half 384 

of the 21st century is ~0.8 K/decade.  385 

 The red line shows temperatures predicted by integrating CESM 700hPa temperatures 386 

vertically using the moist lapse rate. Note that this is equivalent to applying the plume model 387 

(Eq. 3) with an entrainment rate of 𝜀 = 0. In 1950, the 250hPa temperatures predicted by the 388 

moist lapse rate (𝑇𝑀𝐿𝑅) are ~231K, or ~2K warmer than those simulated by the model, consistent 389 

with the differences between tropical-mean temperatures and a moist adiabat found in the 390 

climatological-mean. By 2100, 𝑇𝑀𝐿𝑅 reaches ~242K, which is roughly ~5K warmer than those 391 

simulated by the model. By the last half of the 21st century, the upper tropospheric warming 392 

predicted by the moist lapse rate is about 50% larger (~1.2 K/dec vs. 0.8 K/dec) than that 393 

indicated by CESM.  394 
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 The blue line shows temperatures predicted by integrating CESM 700hPa temperatures 395 

vertically using the plume model with a fixed entrainment rate of 0.8. As discussed earlier, 𝜀 =396 

0.8 provides a close fit to the tropical-mean lapse rate between 700 and 250hPa in the historical 397 

period. Thus 250hPa temperatures predicted by the plume model closely match those simulated 398 

by the CESM in 1950 by construction. However, using a fixed entrainment rate leads to a notable 399 

overestimate of the long-term warming of the tropical troposphere. In the case of 𝜀 = 0.8, the 400 

plume model overpredicts the simulated warming rate at 250hPa by ~40% (~1.1 K/dec vs. ~0.8 401 

K/dec) and yields temperatures in 2100 that exceed the actual temperatures by ~2K (~239K vs. 402 

237K). 403 

 Finally, the black line shows temperatures predicted by integrating 700hPa temperatures 404 

vertically using the plume model with an entrainment rate that varies linearly with temperature as 405 

given by Fig. 3a and Eq. 4b. The temperatures at 250hPa that are predicted by applying Eq. 4b to 406 

the plume model are indistinguishable from those found in the CESM simulations. The warming 407 

rate estimated by the plume model for the case where 𝜀 is given by Eq. 4b is effectively identical 408 

to the actual warming rate (0.83 K/dec). 409 

 410 

 411 

 412 

 413 

 414 

 415 
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 416 
Figure 5. The amplitude of annual-mean tropospheric temperature variability with respect to temperature 417 
variability at 700hPa (i.e., 𝑑𝑇(𝑧)

𝑑𝑇700ℎ𝑃𝑎
). Top panels show 𝑑𝑇(𝑧)

𝑑𝑇700ℎ𝑃𝑎
 based on the zero-buoyancy model with a varying 418 

entrainment rate determined by the linear fit shown in Fig. 3a. Bottom panels show results based on CESM1 419 
output. The derivative is estimated empirically from annual mean data using a bin size of 0.12 K and 5 K for 420 
700hPa temperatures based on the zero-buoyancy model and the CESM1 output, respectively. Colors indicate 421 
the centered value of 700hPa temperature of each bin which the derivatives 𝑑𝑇(𝑧)

𝑑𝑇700ℎ𝑃𝑎
 are calculated. Results are 422 

based on the range of 700hPa temperatures found in the CESM1 simulations over the period 1950-2100. 423 
 424 

Implications for trends in the variance of tropical temperatures 425 

 The implications of the results for changes in tropical-mean temperature variability are 426 

summarized in Figure 5. The temperature variability at a given height level z with respect to the 427 

variability at 700hPa can be expressed as the ratio 𝑑𝑇(𝑧)
𝑑𝑇700ℎ𝑃𝑎

. If the lapse rate between 700hPa and 428 

z is fixed, then 𝑑𝑇(𝑧)
𝑑𝑇700ℎ𝑃𝑎

= 1 for all temperatures. But if the lapse varies with temperature, as is 429 

the case with the moist lapse rate, then so must 𝑑𝑇(𝑧)
𝑑𝑇700ℎ𝑃𝑎

. Figure 5a shows the ratio 𝑑𝑇(𝑧)
𝑑𝑇700ℎ𝑃𝑎

 430 

calculated from the plume model using the linear expression for the entrainment rate given by 431 

Eq. 4b. The line colors indicate different 700hPa temperatures used as a starting point for the 432 

lapse rate. The derivatives are estimated for bin sizes of 0.12 K in 700hPa temperatures. By 433 
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construction, 𝑑𝑇(𝑧)
𝑑𝑇700ℎ𝑃𝑎

= 1 at z=700hPa for all temperatures. We focus on results below 250 hPa 434 

where temperatures transition to radiative equilibrium and moist adiabatic processes are less 435 

relevant for interpreting the temperature profile (Folkins 2002; Keil et al. 2019). As lower 436 

tropospheric temperatures increase, the ratio 𝑑𝑇(𝑧)
𝑑𝑇700ℎ𝑃𝑎

 derived from the model decreases 437 

throughout the tropical troposphere up to 250hPa (Fig. 5a). In the middle troposphere, 𝑑𝑇(𝑧)
𝑑𝑇700ℎ𝑃𝑎

 438 

decreases from ~1.5 to ~1.35, or about ~10%.  439 

 Figure 5b shows 𝑑𝑇(𝑧)
𝑑𝑇700ℎ𝑃𝑎

 calculated from the CESM climate change simulations, where 440 

the derivative is estimated using a wider bin size of 5 K (i.e., 𝑇700ℎ𝑃𝑎 ± 2.5 𝐾) to reduce the 441 

sampling errors that may arise from the large internal variability. The different bin size within a 442 

range of 0.3-8 K does not qualitatively affect the results of the regressions (not shown). Results 443 

are calculated for all annual-temperature profiles in all 40 year simulations and across all 444 

ensemble members. In the mid-upper troposphere above ~600hPa, the CESM climate change 445 

output generally yields decreases in 𝑑𝑇(𝑧)
𝑑𝑇700ℎ𝑃𝑎

 reminiscent of those predicted by the plume model, 446 

albeit there is some scatter in the results for individual temperature lines. 447 

 Why do changes in 𝑑𝑇(𝑧)
𝑑𝑇700ℎ𝑃𝑎

 matter? The ratio indicates how upper tropospheric 448 

temperatures vary per unit change in lower tropospheric temperature. It thus provides a measure 449 

of how the vertical structure of internal tropical tropospheric variability might change under 450 

global warming. For example, consider the case of ENSO variability. Decreases in 𝑑𝑇(𝑧)
𝑑𝑇700ℎ𝑃𝑎

 451 

suggest that the same ampitude ENSO event in surface temperature will have a weaker 452 

projection onto upper tropical tropospheric temperatures and - potentially - the ensuing 453 

teleconnections. We defer analysis of the implications of the results in Fig. 5 for changes in 454 

internal climate variability under global warming to a companion study. 455 

 456 

6. Discussion 457 

The vertical profile of tropical-mean temperatures exhibits well-known departures from a 458 

moist adiabat. Upper tropical tropospheric temperatures are several degrees less than those 459 

predicted by a moist adiabat in the climatological-mean (Singh and O’Gorman 2013; Keil et al., 460 

2019; Po-Chedley et al. 2019; Keil et al., 2019; Miyawaki et al. 2020). The tropical troposphere 461 
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warms less than that predicted by a moist adiabat in observations (e.g., Santer et al. 2005; Steiner 462 

et al. 2020) and climate change simulations (e.g., Santer et al. 2005; Romps and Kuang 2010; 463 

Romps 2011; Muller et al. 2011; Sobel and Camargo 2011; Fasullo 2012; Singh and O’Gorman 464 

2013; Seeley and Romps, 2015; Zhou and Xie, 2019; Miyawaki et al. 2020; Bao and Stevens 465 

2021; Bao et al. 2021).  466 

The climatological-mean differences between tropical-mean temperatures and those 467 

predicted by a moist adiabat (Δ𝑇) are thought to arise from a variety of factors, including the 468 

entrainment of environmental air into convecting plumes, the fact that the tropical-mean reflects 469 

an average over plumes at a range of different heights, and the effects of the large-scale 470 

circulation (Singh and O’Gorman, 2013; Zhou and Xie, 2019; Keil et al., 2019; Miyawaki et al., 471 

2020; Bao and Stevens, 2021). The increases in Δ𝑇 under climate change have been primarily 472 

linked to increases in the saturation vapor deficit of the environment 𝑞𝑒
∗ − 𝑞𝑒, which increases 473 

the efficiency of convective entrainment since the mixing between convective plumes and the 474 

environment is acting on larger gradients in moist static energy (Singh and O’Gorman 2013; 475 

Seeley and Romps 2015).  476 

Here we have used the zero-buoyancy plume model of Singh and O'Gorman (2013) to 477 

provide novel insights into the factors that govern the increases in Δ𝑇 - and thus in CAPE - under 478 

climate change. The key findings are the following: 479 

1) The increases in Δ𝑇 under climate change are only partially explained by increases in 480 

the saturation vapor deficit in the plume model. Rather, the increases in Δ𝑇 are only simulated 481 

when the entrainment rate 𝜀 that acts on the saturation vapor deficit also increases with 482 

temperature.  483 

2) The required increases in 𝜀 exhibit a robust linear relationship with lower-tropospheric 484 

(i.e., cloud base) temperature. Simulations based on the plume model indicate that the 485 

entrainment rate required to reproduce the upper tropospheric warming in climate change 486 

simulations roughly doubles over the 21st century. 487 

3) The linear relationship between lower tropospheric temperature and the entrainment 488 

rate 𝜀 emerges in both climate change simulations and observations based on ERA5 and 489 

radiosonde measurements. The amplitude of the linear relationship varies depending on details of 490 

the analysis. But the sign and robustness of the linear relationship is reproducible when the cloud 491 

base level is lowered to 850hPa, when the level used to fit the plume model to actual 492 
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temperatures is lowered from 250hPa to 500hPa, and in large ensembles of climate change 493 

simulations run on different ESMs. The results can not be explained by realistic changes in the 494 

environmental relative humidity of the plume model.  495 

4) The results have implications for understanding long-term trends in tropical-mean 496 

temperatures. The warming rate of the upper tropical troposphere in climate change simulations 497 

run on CESM1 with RCP8.5 forcings is roughly 0.8 K/dec. In contrast, the warming rate of the 498 

upper tropical troposphere predicted by integrating CESM1 lower-tropospheric temperatures 499 

vertically using the plume model is (a) ~1.2 K/dec if free-tropospheric temperatures are 500 

determined from a moist adiabat (i.e., 𝜀 = 0); and (b) ~1.1 K/dec if free-tropospheric 501 

temperatures are determined from the plume model run with a fixed entrainment rate (𝜀 = 0.8) 502 

acting on increases in the saturation vapor deficit. The warming rate of the upper tropical 503 

troposphere found in the CESM climate change simulations is only recovered when the plume 504 

model is run with an entrainment rate that roughly doubles over the course of the simulation. A 505 

similar relationship between the overprediction of tropical tropospheric warming and the 506 

entrainment rate was highlighted in Miyawaki et al. (2020), but their analysis focused on the 507 

effects of a fixed value of 𝜀 on trends in Δ𝑇; they did not consider time-varying changes in 𝜀 as a 508 

function of lower tropospheric temperatures. 509 

 5) The results also have implications for changes in the variance of tropical-mean 510 

temperatures. The plume model predicts a roughly 5% decrease in the ratio of upper to lower 511 

tropical temperature variance for a warming of 4K. Qualitatively similar changes in variance are 512 

found in the ESMs over the course of the 21st century.  513 

 The changes in the entrainment rate indicated here could arise from a range of physical 514 

processes, including changes in the amplitude of turbulent mixing associated with individual 515 

convective plumes and/or variations in the depth and strength of convective plumes across the 516 

tropics (Xu et al., 2021; Bao et al., 2021; Sarve 2022). It remains to be determined which of 517 

these processes are key for the inferred increases in the entrainment rate with climate change 518 

indicated here. 519 
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 535 
Figure A1. As in the grey dots in Fig. 3a, but for the ESMs other than CESM listed in Section 2. Slopes are given 536 
on the panels. 537 
 538 

References 539 

Bao, J., and B. Stevens, 2021: The elements of the thermodynamic structure of the tropical 540 

atmosphere. Journal of the Meteorological Society of Japan. Ser. II, 99, 1483-1499. 541 



 

23 

Bao, J., B. Stevens, L. Kluft, and D. Jiménez‐ de‐ la‐ Cuesta, 2021: Changes in the tropical lapse 542 

rate due to entrainment and their impact on climate sensitivity. Geophysical Research Letters, 543 

48, e2021GL094969. 544 

Charney, J. G., 1963: A note on large-scale motions in the tropics. Journal of Atmospheric 545 

Sciences, 20, 607-609. 546 

Chen, J., and A. Dai, 2023: The atmosphere has become increasingly unstable during 1979–2020 547 

over the Northern Hemisphere. Geophysical Research Letters, 50, e2023GL106125. 548 

——, 2023: The atmosphere has become increasingly unstable during 1979–2020 over the 549 

Northern Hemisphere. Geophysical Research Letters, 50, e2023GL106125. 550 

Deser, C., and Coauthors, 2020: Insights from Earth system model initial-condition large 551 

ensembles and future prospects. Nature Climate Change, 10, 277-286. 552 

Durre, I., X. Yin, R. S. Vose, S. Applequist, and J. Arnfield, 2018: Enhancing the data coverage 553 

in the integrated global radiosonde archive. Journal of Atmospheric and Oceanic Technology, 554 

35, 1753-1770. 555 

Fasullo, J., 2012: A mechanism for land–ocean contrasts in global monsoon trends in a warming 556 

climate. Climate Dynamics, 39, 1137-1147. 557 

Flannaghan, T. J., S. Fueglistaler, I. M. Held, S. Po‐ Chedley, B. Wyman, and M. Zhao, 2014: 558 

Tropical temperature trends in atmospheric general circulation model simulations and the 559 

impact of uncertainties in observed SSTs. Journal of Geophysical Research: Atmospheres, 119, 560 

13,327-313,337. 561 

Folkins, I., 2002: Origin of lapse rate changes in the upper tropical troposphere. Journal of the 562 

atmospheric sciences, 59, 992-1005. 563 

Gettelman, A., D. Seidel, M. Wheeler, and R. Ross, 2002: Multidecadal trends in tropical 564 

convective available potential energy. Journal of Geophysical Research: Atmospheres, 107, 565 

ACL 17-11-ACL 17-18. 566 

Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quarterly journal of the royal 567 

meteorological society, 146, 1999-2049. 568 

Hurrell, J. W., and Coauthors, 2013: The community earth system model: a framework for 569 

collaborative research. Bulletin of the American Meteorological Society, 94, 1339-1360. 570 



 

24 

Jeffrey, S., and Coauthors, 2013: Australia’s CMIP5 submission usingthe CSIRO-Mk3. 6 model. 571 

Australian Meteorological and Oceanographic Journal, 63, 1-13. 572 

Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble 573 

project: A community resource for studying climate change in the presence of internal climate 574 

variability. Bulletin of the American Meteorological Society, 96, 1333-1349. 575 

Keil, P., H. Schmidt, B. Stevens, and J. Bao, 2021: Variations of tropical lapse rates in climate 576 

models and their implications for upper-tropospheric warming. Journal of Climate, 34, 9747-577 

9761. 578 

Kirchmeier-Young, M. C., F. W. Zwiers, and N. P. Gillett, 2017: Attribution of extreme events in 579 

Arctic sea ice extent. Journal of Climate, 30, 553-571. 580 

Lawson, R., 1990: Thermodynamic analyses of buoyancy and entrainment in cumuli using 581 

measurements from a radiometric thermometer. 1990 Conference on Cloud Physics, San 582 

Francisco, CA, 685-692. 583 

Miyawaki, O., Z. Tan, T. A. Shaw, and M. F. Jansen, 2020: Quantifying key mechanisms that 584 

contribute to the deviation of the tropical warming profile from a moist adiabat. Geophysical 585 

Research Letters, 47, e2020GL089136. 586 

Muller, C. J., P. A. O’Gorman, and L. E. Back, 2011: Intensification of precipitation extremes with 587 

warming in a cloud-resolving model. Journal of Climate, 24, 2784-2800. 588 

Po‐ Chedley, S., M. D. Zelinka, N. Jeevanjee, T. J. Thorsen, and B. D. Santer, 2019: Climatology 589 

explains intermodel spread in tropical upper tropospheric cloud and relative humidity response 590 

to greenhouse warming. Geophysical Research Letters, 46, 13399-13409. 591 

Riemann-Campe, K., K. Fraedrich, and F. Lunkeit, 2009: Global climatology of convective 592 

available potential energy (CAPE) and convective inhibition (CIN) in ERA-40 reanalysis. 593 

Atmospheric Research, 93, 534-545. 594 

Rodgers, K. B., J. Lin, and T. L. Frölicher, 2015: Emergence of multiple ocean ecosystem drivers 595 

in a large ensemble suite with an Earth system model. Biogeosciences, 12, 3301-3320. 596 

Romps, D. M., 2011: Response of tropical precipitation to global warming. Journal of the 597 

Atmospheric Sciences, 68, 123-138. 598 

Romps, D. M., and A. B. Charn, 2015: Sticky thermals: Evidence for a dominant balance between 599 

buoyancy and drag in cloud updrafts. Journal of the Atmospheric Sciences, 72, 2890-2901. 600 



 

25 

Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical 601 

troposphere? Journal of the Atmospheric Sciences, 67, 468-484. 602 

Romps, D. M., J. T. Seeley, D. Vollaro, and J. Molinari, 2014: Projected increase in lightning 603 

strikes in the United States due to global warming. Science, 346, 851-854. 604 

Santer, B. D., and Coauthors, 2017: Comparing tropospheric warming in climate models and 605 

satellite data. Journal of Climate, 30, 373-392. 606 

Santer, B. D., and Coauthors, 2005: Amplification of surface temperature trends and variability in 607 

the tropical atmosphere. Science, 309, 1551-1556. 608 

Savre, J., 2022: What controls local entrainment and detrainment rates in simulated shallow 609 

convection? Journal of the Atmospheric Sciences, 79, 3065-3082. 610 

Seeley, J. T., and D. M. Romps, 2015: Why does tropical convective available potential energy 611 

(CAPE) increase with warming? Geophysical Research Letters, 42, 10,429-410,437. 612 

Sherwood, S. C., D. Hernández-Deckers, M. Colin, and F. Robinson, 2013: Slippery thermals and 613 

the cumulus entrainment paradox. Journal of the Atmospheric Sciences, 70, 2426-2442. 614 

Singh, M. S., and P. A. O'Gorman, 2013: Influence of entrainment on the thermal stratification in 615 

simulations of radiative‐ convective equilibrium. Geophysical Research Letters, 40, 4398-616 

4403. 617 

Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. 618 

Journal of climate, 13, 4378-4392. 619 

Sobel, A. H., and S. J. Camargo, 2011: Projected future seasonal changes in tropical summer 620 

climate. Journal of Climate, 24, 473-487. 621 

Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–622 

atmosphere models. Journal of climate, 19, 3354-3360. 623 

Soden, B. J., D. L. Jackson, V. Ramaswamy, M. Schwarzkopf, and X. Huang, 2005: The radiative 624 

signature of upper tropospheric moistening. Science, 310, 841-844. 625 

Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock, 2002: Global cooling after the 626 

eruption of Mount Pinatubo: A test of climate feedback by water vapor. science, 296, 727-730. 627 

Steiner, A. K., and Coauthors, 2020: Observed temperature changes in the troposphere and 628 

stratosphere from 1979 to 2018. Journal of Climate, 33, 8165-8194. 629 

Stone, P. H., and J. H. Carlson, 1979: Atmospheric lapse rate regimes and their parameterization. 630 

Journal of Atmospheric Sciences, 36, 415-423. 631 



 

26 

Taszarek, M., J. T. Allen, M. Marchio, and H. E. Brooks, 2021: Global climatology and trends in 632 

convective environments from ERA5 and rawinsonde data. NPJ climate and atmospheric 633 

science, 4, 35. 634 

Wei, D., A. M. Blyth, and D. J. Raymond, 1998: Buoyancy of convective clouds in TOGA 635 

COARE. Journal of the atmospheric sciences, 55, 3381-3391. 636 

Xu, X., C. Sun, C. Lu, Y. Liu, G. J. Zhang, and Q. Chen, 2021: Factors affecting entrainment rate 637 

in deep convective clouds and parameterizations. Journal of Geophysical Research: 638 

Atmospheres, 126, e2021JD034881. 639 

Zhou, W., and S.-P. Xie, 2019: A conceptual spectral plume model for understanding tropical 640 

temperature profile and convective updraft velocities. Journal of the Atmospheric Sciences, 641 

76, 2801-2814. 642 

 643 

 644 

 645 


