

Transient Responses of Northern Hemisphere Wintertime Circulation to Stratospheric Soot Injection

Simchan Yook^{1*}, Kane Stone¹, Joonsuk M. Kang², and Jaeyoung Hwang³

Affiliations:

¹ Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

² Columbia University, New York, NY, USA

³ Georgia Institute of Technology, Atlanta, GA, USA

Corresponding author. Email: syook@mit.edu

22 **Abstract:**

23 Stratospheric aerosol injections are known to strengthen the wintertime polar vortex, with earlier
24 studies linking this response to enhanced equator-to-pole temperature gradients from aerosol
25 heating and the associated thermal-wind balance. However, the mechanisms governing the short-
26 term circulation response remain poorly understood. Here, we use a chemistry-climate model to
27 simulate regional nuclear war scenarios and examine the heat and momentum budgets to
28 quantify the transient thermal and dynamical responses to the tropical soot injection. The results
29 reveal that the enhanced temperature gradients in the mid-to-high latitudes arise not from direct
30 radiative forcing but from dynamical heat redistribution. Together, these findings provide a new
31 perspective — a direct dynamical mechanism — showing that the circulation responses to
32 stratospheric aerosol perturbations, through the redistribution of heat and momentum to remote
33 regions, can play a key role in strengthening the winter polar jet,

34

35

36

37

38

39

40

41

42

43

44

45 **Key Points:**

46 • Aerosol perturbations drive tropical temperatures via radiation and extratropical changes via
47 atmospheric dynamics.

48 • Enhanced meridional temperature gradients in mid-to-high latitudes explain polar vortex
49 intensification via thermal wind balance.

50 • Dynamical processes play a key role in these enhanced meridional temperature gradients in
51 mid-to-high latitudes.

52

53 **Plain Language Summary:**

54 Simulations of large-scale nuclear conflicts indicate that substantial injections of aerosols
55 into the stratosphere can strengthen the wintertime polar vortex. Previous studies attributed this
56 strengthening to enhanced equator-to-pole temperature differences caused by aerosol heating, but
57 the detailed dynamical processes remained unclear. Using the Whole Atmosphere Community
58 Climate Model (WACCM) to simulate regional nuclear war scenarios, we show that aerosols
59 influence stratospheric temperatures both directly, through tropical heating, and indirectly, via
60 changes in atmospheric circulation. These dynamical adjustments redistribute heat toward higher
61 latitudes, enhancing meridional temperature gradients and strengthening the polar vortex. The
62 results provide new insight into how aerosol radiative effects in one region can remotely
63 influence stratospheric circulation, highlighting the critical role of atmospheric dynamics in the
64 atmospheric response to large-scale aerosol perturbations.

65

66

67

68 **Main Text:**

69 **1. Introduction**

70 The Northern Hemisphere (NH) atmospheric circulation response to stratospheric aerosol
71 injections (SAI) has been extensively examined across a wide range of numerical modeling
72 studies. Simulations of explosive volcanic eruptions (Graf et al., 1991; Bittner et al., 2016; Dalla
73 Santa et al., 2019) and geoengineering scenarios (Banerjee et al., 2021; Jones et al., 2020)
74 typically implement massive injections of sulfur dioxide into the stratosphere. Nuclear war
75 scenarios consider large injections of black carbon (BC) from urban fires (Coupe and Robock,
76 2021). Results from these studies consistently indicate a broadly similar outcome: aerosol-
77 induced heating of the tropical stratosphere followed by a strengthening of the stratospheric polar
78 vortex (SPV).

79 A variety of radiative and dynamical mechanisms have been proposed to explain the
80 linkage between tropical aerosol perturbations and the strength of the SPV.

81 (1) **Direct radiative mechanism:** The first mechanism involves warming of the tropical
82 stratosphere due to aerosol-induced heating, which enhance the meridional temperature
83 gradient and thereby strengthen the stratospheric jet through thermal wind balance (Graf
84 et al., 1993; Kodera, 1994; Robock and Mao, 1995; Coupe and Robock, 2021).

85 (2) **Indirect dynamical mechanism:** However, some studies suggest that the changes in the
86 stratospheric temperature gradient from the direct radiative effects of aerosol forcing are
87 largely confined to the subtropics. Thus, the acceleration of the jet required to maintain
88 thermal wind balance occurs mainly in the subtropical jet rather than the polar jet. The
89 second mechanism has been proposed to explain the strengthening of the SPV through an
90 indirect dynamical process, the acceleration of the subtropical jet deflects planetary wave

91 propagation equatorward (i.e., limits poleward wave fluxes), thereby indirectly
92 intensifying the SPV (Toohey et al., 2014; Bittner et al., 2016; Dalla Santa et al., 2019).

93 (3) **Indirect radiative mechanism:** The third mechanism includes an indirect tropospheric
94 pathway. Aerosol scattering of shortwave radiation cools the surface, weakens the
95 tropospheric meridional temperature gradient and baroclinicity, which in turn, reduces
96 upward wave flux and contributes to the polar jet acceleration (Graf et al., 1992;
97 Stenchikov et al., 2002; Dalla Santa et al., 2019).

98

99 Together, these mechanisms highlight how coupled radiative and dynamical adjustments
100 can strengthen the wintertime SPV following tropical aerosol injections. However, most previous
101 work has focused on seasonal or longer-term adjustments. The transient evolution during the
102 weeks immediately following injection - the period when the atmosphere adjusts most rapidly -
103 remains comparatively unexplored.

104 Here, we use a chemistry-climate model to examine how radiative and dynamical
105 processes contribute to the short-term, stratospheric response to soot injection in regional
106 nuclear-war scenarios. We quantify the evolution of the heat and momentum budgets to assess
107 the processes that link the initial aerosol perturbation to the early-stage circulation response.

108

109 **2. Data and Methods**

110 **2.1. Model and Scenarios**

111 We assess the Whole Atmosphere Community Climate Model version 4 (WACCM4;
112 Marsh et al., 2013) simulations, previously run by Yook et al. (2025) to assess the climate

113 response to a regional nuclear conflict. The simulations are run with fully interactive chemistry
114 and coupled ocean, land, and sea-ice components, with a horizontal resolution of $1.9^\circ \times 2.5^\circ$, 66
115 vertical levels, and a model top near 140 km. The model incorporates the Model for Ozone and
116 Related Chemical Tracers (Kinnison et al., 2007) and computes photolysis rates using the
117 Tropospheric Ultraviolet and Visible (TUV) radiation scheme (Madronich & Flocke, 1997),
118 allowing for the effects of aerosol scattering and absorption on actinic fluxes.

119 Two sets of simulations are analyzed: 1) a control (**CTRL**) case with present-day
120 background conditions and 2) an India-Pakistan (**IP**) case representing a regional nuclear conflict
121 scenario following Yook et al. (2025). In the **IP** experiment, a total of ~ 6.7 Tg of smoke is
122 injected into the upper troposphere (150-300 hPa) over the India and Pakistan regions during 12-
123 15 January of the first simulation year, consistent with emission estimates from Toon et al.
124 (2007, 2019). The injected smoke consists of 70 % black carbon (BC) and 30 % organic carbon
125 (OC) and is simulated with the Community Aerosol and Radiation Model for Atmospheres
126 (CARMA; Bardeen et al., 2008), which explicitly represents coagulation, wet and dry deposition,
127 and gravitational settling. Details of the model configuration and experimental design are
128 described in Bardeen et al. (2021) and Yook et al. (2025).

129 Each set of experiments includes 20 ensemble members, initialized from different initial
130 conditions on 1 January to isolate circulation responses to stratospheric aerosol forcing from
131 internal climate variability. All ensemble members were integrated for four months, and the
132 results presented here are based on the ensemble mean of each field.

133

134 **2.2. The Zonal Mean Heat Budget**

135 To assess the thermal and dynamical responses of the circulation, we quantify the
 136 temporal and spatial evolution of the stratospheric heat budget as a function of latitude and
 137 pressure (e.g., Holton, 2004; Lachmy & Kaspi, 2020; White et al., 2024). The prognostic
 138 equation for zonal mean temperature can be written as:

$$139 \quad \frac{\partial \bar{T}}{\partial t} = \bar{Q} - \bar{\omega} \left(\frac{\partial \bar{T}}{\partial p} - \kappa \frac{\partial \bar{T}}{p} \right) - \frac{1}{a \cos \phi} \frac{\partial (\cos \phi (\bar{v}' T'))}{\partial \phi} - \left\{ \left(\frac{\partial (\bar{\omega}' T')}{\partial p} - \kappa \frac{(\bar{\omega}' T')}{p} \right) - \bar{v} \frac{\partial \bar{T}}{a \partial \phi} + \bar{Q}_{GW} \right\} \dots (1)$$

140 TEND RAD ADIA EHFC RES

141 Here, T is temperature, v is meridional wind, ω is vertical velocity in pressure coordinates, Q is
 142 the diabatic heating tendency, and Q_{GW} represents the heating rate due to gravity-wave drag. p is
 143 pressure, ϕ is latitude, a is Earth's radius, and $\kappa = R_a/c_p$. The overbar denotes the zonal mean,
 144 and the prime denotes deviations from the zonal mean.

145 The term on the left-hand side of the above equation represents the net temperature
 146 tendency (TEND). The first term on the right-hand side represents the diabatic heating from the
 147 sum of longwave and shortwave heating rates (i.e., radiative processes; RAD). The second term
 148 represents the adiabatic process by vertical motion (hereafter ADIA), and the third term
 149 corresponds to the meridional eddy heat flux convergence (EHFC). The remaining terms (fourth
 150 through sixth) represent heating due to vertical eddy heat flux convergence, temperature
 151 advection by the zonal mean meridional wind, and heating from gravity wave drag, respectively,
 152 comprising the residual terms (RES). To distinguish heating from dynamical processes from that
 153 due to radiative processes, we define the dynamical temperature tendency (DYN) as the sum of
 154 the ADIA, EHFC, and RES terms.

155

156

157

158 **3. Results**159 **3.1. Stratospheric Temperature and Circulation Responses**

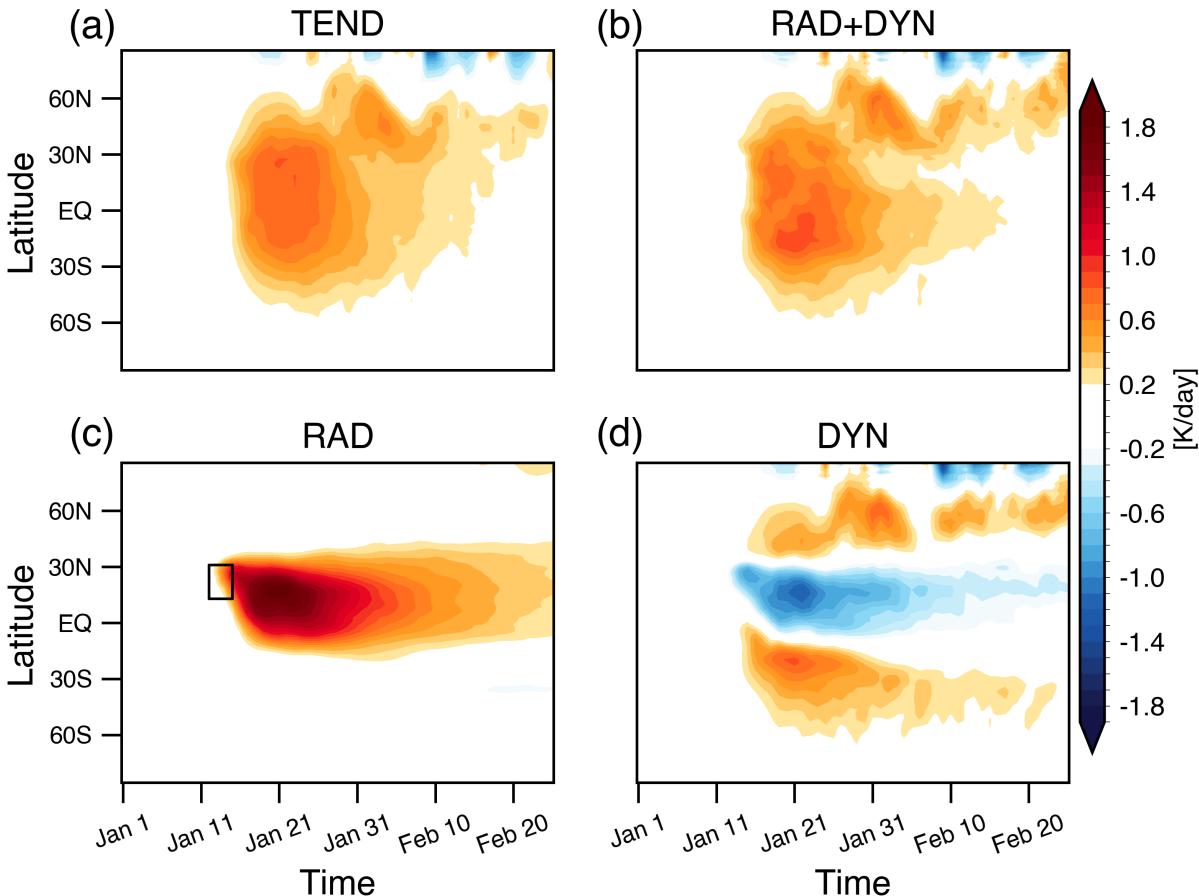
160

161 **Figure 1.** Changes in zonal-mean (a) temperature and (b) zonal wind between **IP** and **CTRL** simulations
 162 (color shading). In panel (b), line contours indicate zonal-wind changes estimated from the thermal wind
 163 relationship using the temperature anomalies shown in panel (a). All fields are averaged over the 30-day period
 164 from 11 January to 9 February.

165

166 Figure 1 shows the stratospheric climate responses to the aerosol emission from the IP
 167 conflict, including changes in (a) temperature and (b) zonal wind.

168 The stratosphere warms rapidly after the injection, with temperature anomalies exceeding
 169 10 K in the tropical lower stratosphere during the first month (Fig. 1a). This tropical warming
 170 arises primarily from shortwave absorption by black-carbon aerosols, consistent with earlier
 171 studies of nuclear-conflict scenarios (Robock et al., 2007; Mills et al., 2008, 2014; Bardeen et al.,
 172 2021; Yook et al., 2025).

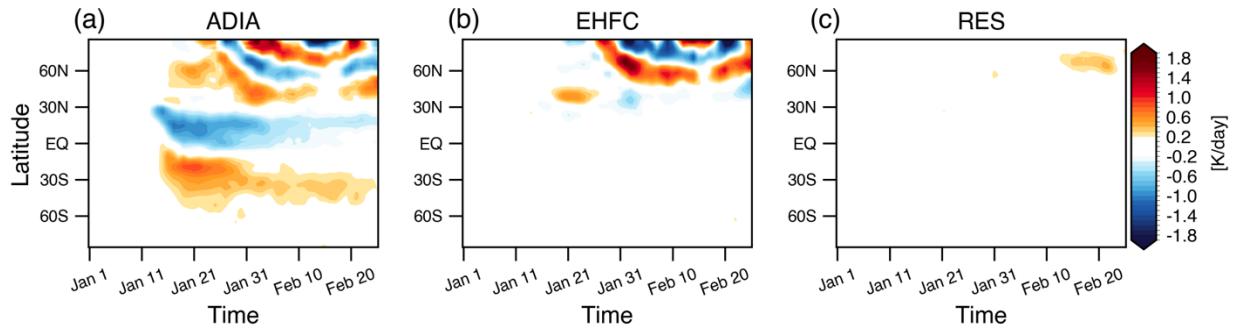

173 The circulation responses are marked by strengthening of the wintertime polar vortex.
174 Zonal-wind anomalies show robust westerly accelerations across the NH mid-to-high latitudes as
175 well as over the SH subtropics (Fig. 1b). The thermal-wind response derived from the
176 temperature anomalies (line contours) closely matches the simulated wind response (shading),
177 indicating that the circulation anomalies are largely in thermal-wind balance with the
178 temperature anomalies.

179 A notable distinction from earlier stratospheric aerosol-injection studies (Bittner et al.,
180 2016a; Toohey et al., 2014) is that our results only show strengthening of the polar jet, with no
181 corresponding strengthening of the subtropical jet. Thus, the second mechanism proposed in
182 earlier works - where an enhanced subtropical jet deflects planetary-wave propagation
183 equatorward, thereby strengthening the SPV- is not applicable here.

184 The close consistency between the simulated zonal wind response and the thermal wind
185 balance suggests that the primary mechanism in our case may be consistent with the first
186 mechanism: direct thermal perturbations in the stratosphere that intensify the polar night jet
187 through thermal wind balance. We further examine this by quantifying the associated heat-
188 budget in the next section to identify the processes contributing to the polar-jet intensification.

189

190 **3.2. Stratospheric Heat Budget Analyses**



191

192 **Figure 2.** Time series of changes in temperature tendency (K day^{-1}). Each panel shows (a) total temperature
 193 tendency (TEND; LHS of Eq. 1), (b) sum of all diagnosed thermodynamic tendency terms (RAD+DYN; RHS
 194 of Eq. 1). (c) radiative heating term (RAD), and (d) dynamical contribution (DYN). All results in Figs. 2-4 are
 195 shown as differences between the **IP** and **CTRL** simulations. The black box in panel (c) marks the aerosol
 196 injection time and location for the IP conflict scenario.

197

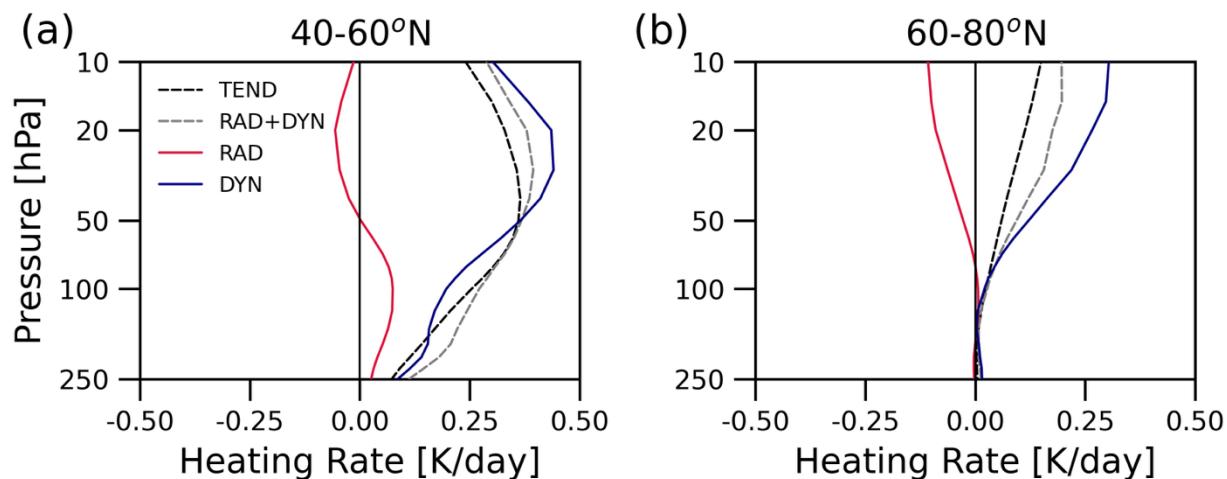
198

199

200 **Figure S1.** As in Fig. 2, but for the (a) adiabatic process by vertical motion (ADIA), (b) meridional eddy heat
 201 flux convergence (EHFC), and (c) the residual term (RES).

202

203 Figure 2 summarizes the evolution of the temperature tendency following the soot
 204 injection. The net temperature tendency (Fig. 2a) is well captured by the sum of the diagnosed
 205 radiative and dynamical terms (Fig. 2b), indicating that the heat-budget decomposition provides
 206 a physically consistent explanation of the temperature response. The atmosphere warms rapidly
 207 over the tropics within a few days of the injection (January 12-15), and a secondary warming
 208 signal emerges in the extratropics roughly two weeks later.


209 Figs. 2c and 2d show the separate contributions of radiative and dynamical processes to
 210 the temperature tendency. Fig. S1 provides a detailed breakdown of the individual contributions
 211 from adiabatic process (ADIA), meridional eddy heat-flux convergence (EHFC), and the residual
 212 terms (RES) to the dynamical tendency. The radiative and dynamical contributions exhibit
 213 distinct spatial structures (Figs. 2c-2d). Radiative heating produces strong tropical warming,
 214 consistent with shortwave absorption by black-carbon aerosols, but this radiative signal remains
 215 confined largely within $\pm 30^\circ$ latitude. In contrast, the dynamical tendency exhibits cooling over
 216 the tropics - associated with enhanced ascent and adiabatic cooling (Fig. S1a) - and warming
 217 over the midlatitudes (Fig. 2d). The dynamical warming over the mid-to-high latitudes arises

218 from both vertical motion (ADIA) and meridional heat transport by atmospheric eddies (EHFC),
 219 as shown in Fig. S1.

220 Taken together, the results indicate that aerosol perturbations influence the temperature
 221 field through two pathways: (1) direct radiative heating in the tropics and (2) dynamical heat
 222 redistribution that transports warm anomalies poleward. The latter dominates the extratropical
 223 response and is therefore central to understanding how the soot injection alters the meridional
 224 temperature structure.

225

226

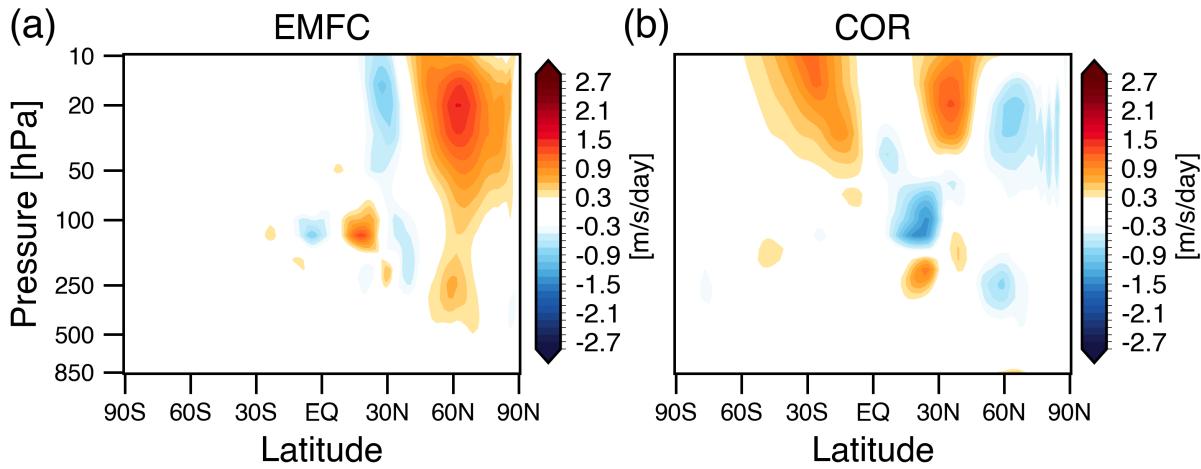
227
 228 **Figure 3.** Vertical profiles of temperature-tendency averaged over (a) 40-60°N and (b) 60-80°N. The net
 229 temperature tendency (TEND) is shown in black dashed, the sum of radiative and dynamical tendencies
 230 (RAD+DYN) in gray dashed, radiative heating (RAD) in red, and dynamical heating (DYN) in blue line.

231

232 **3.3. Mechanisms for Stratospheric Polar Vortex Response**

233 Figure 3 summarizes the vertical structure of the temperature tendencies over the NH
 234 mid- and high latitudes. Again, the close agreement between the net temperature tendency and
 235 the sum of the radiative and dynamical terms (black and gray dashed lines) indicates that the
 236 heat-budget analysis accurately captures the processes driving the temperature response.

237 Both latitude bands show warming, but with a pronounced meridional contrast. The
 238 midlatitudes (40–60°N; Fig. 3a) warm more strongly than the high latitudes (60–80°N; Fig. 3b),
 239 implying an increase in the meridional temperature gradient. Through thermal-wind balance, this
 240 enhanced temperature gradient is consistent with the strengthening of the polar jet noted in Fig.
 241 1b. The warming at both latitude ranges is dominated by dynamical processes (blue lines), in
 242 agreement with the time-evolving dynamical heating patterns shown in Fig. 2. These results
 243 underscore that large-scale circulation anomalies - not direct radiative heating - govern the
 244 extratropical temperature structure and play the key role in the early strengthening of the polar
 245 vortex.


246 To further diagnose the circulation response, we examine the zonal-mean momentum
 247 budget as follows (Eq. 2; Holton, 2004; Dima et al., 2005; White et al., 2024):

$$248 \quad \frac{\partial \bar{U}}{\partial t} \cong \bar{v}(f - \frac{1}{a \cos \phi} \frac{\partial(\bar{u} \cos \phi)}{\partial \phi}) - \frac{1}{a \cos^2 \phi} \frac{\partial(\cos \phi \bar{u} \bar{v}')}{} - (\bar{u} \frac{\partial \bar{\omega}}{\partial p} + \frac{\partial(\bar{u}' \bar{\omega}')}{\partial p} - \bar{F}_r) \dots \quad (2)$$

249 COR EMFC URES

250 The wind tendency can be written as the sum of three terms, the Coriolis acceleration
 251 (COR), the eddy momentum flux convergence (EMFC), and the and the residual term (URES),
 252 which includes vertical advection, vertical eddy momentum flux convergence, and friction (F_r).

253

254

255 **Figure 4.** The acceleration of the zonal-mean zonal flow ($\text{m s}^{-1} \text{ day}^{-1}$) associated with the (a) eddy momentum-
 256 flux convergence (EMFC) and (b) Coriolis torque (COR).

257

258 Figure 4 demonstrates the key components of the zonal-mean momentum budget that
 259 drive the anomalous zonal wind responses. The eddy momentum-flux convergence produces
 260 strong westerly accelerations throughout the stratosphere across $\sim 40\text{--}90^\circ\text{N}$ (Fig. 4a), indicating
 261 that eddy forcing is the primary driver of the anomalous zonal-wind response. The spatial
 262 structure of the EMFC anomalies aligns with the regions of strengthened westerlies in Fig. 1b,
 263 consistent with enhanced wave-mean flow interactions contributing to the intensification of the
 264 polar vortex.

265 The Coriolis torque contributes more modestly to the anomalies over the NH mid-to-high
 266 latitudes, indicating a slight equatorward shift of the zonal-wind anomalies. The influence of the
 267 Coriolis torque is more pronounced over the SH subtropics and midlatitudes, where the jet
 268 intensifies but the EMFC anomalies are weak (Fig. 4b). Overall, the results in Fig. 4 reveal the
 269 dynamical pathway for the polar-jet acceleration, highlighting the key role of eddy momentum
 270 forcing.

271 **4. Conclusions**

272 This study uses a chemistry–climate model to examine the transient wintertime
273 circulation response to soot injected into the tropical stratosphere during a regional-scale nuclear
274 conflict. Previous studies of stratospheric aerosol injection scenario showed that the aerosol-
275 induced stratospheric heating anomalies are linked to strengthening of the winter polar vortex
276 through three broad pathways:

277 (1) **Direct radiative mechanism:** Aerosol-induced tropical warming enhances the meridional
278 temperature gradient and strengthens the jet through thermal-wind balance (Graf et al., 1993;
279 Kodera, 1994; Robock & Mao, 1995; Coupe & Robock, 2021).

280 (2) **Indirect dynamical mechanism:** The radiative temperature anomalies are often confined to
281 the subtropics, which primarily strengthens the subtropical jet. The enhanced subtropical jet
282 deflects planetary-wave propagation equatorward, reduces poleward wave fluxes, and indirectly
283 intensifies the polar vortex (Toohey et al., 2014; Bittner et al., 2016; Dalla Santa et al., 2019).

284 (3) **Indirect radiative mechanism:** Aerosol scattering cools the surface and weakens the
285 tropospheric meridional temperature gradient and baroclinicity, reducing upward wave flux and
286 further contributing to polar-jet acceleration (Graf et al., 1992; Stenchikov et al., 2002; Dalla
287 Santa et al., 2019).

288 Here, we quantify the stratospheric heat and momentum budgets to assess the transient
289 thermal and dynamical responses of the circulation to the aerosol perturbations during the month
290 following the injection. The heat budget reveals that tropical warming is driven by radiative
291 heating, whereas extratropical warming arises primarily from dynamical processes that cool the
292 tropics and transport heat poleward (Fig. 2). These extratropical warm anomalies driven by

293 dynamical processes enhance the meridional temperature gradient over the polar-jet region (Fig.
294 3). The momentum budget (Fig. 4) further shows that the strengthening of the polar vortex is
295 driven primarily by eddy momentum-flux convergence.

296 Our results provide a new perspective, a **direct dynamical mechanism** – for how
297 stratospheric aerosol perturbations influence atmospheric circulation in remote regions. The
298 transient dynamical response to the aerosol perturbation can play a key role in strengthening the
299 winter polar jet, through the redistribution of heat and the transport of momentum.

300

301 **Acknowledgments**

302 S. S and S. Y. are supported by a grant from the Future of Life Institute. The CESM
303 project is supported primarily by the U.S. National Science Foundation. The authors
304 acknowledge the Climate Simulation Laboratory at NCAR's Computational and Information
305 Systems Laboratory (CISL; sponsored by NSF and other agencies) and the MIT's Massachusetts
306 Green High Performance Computing Center (supported by the Center for Sustainability Science
307 and Strategy) for providing computing and storage resources. Open Access funding enabled and
308 organized by MIT Hybrid 2025.

309

310 **A conflict of interest disclosure statement**

311 All authors declare that they have no conflicts of interest.

312

313 **Open Research**

314 The data used in the generation of the figures of this paper are available in Yook (2025).
315 WACCM4 is an open-source community model, which was developed with support primarily
316 from the National Science Foundation, see Marsh et al. (2013).

317

318 **References**

319 Alh